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ABSTRACT

This paper concerned with the dynamic analysis oh-uniform Bernoulli-Euler beam resting on bi-paratnic

foundations and traversed by constant magnitudeimgadistributed load with simply supported endsditians. Damping
term effect is incorporated into the model. Thhtson technique employed is based on Galerkin pekitind integral
transformation in conjunction with the convolutitreorem. The deflection of the beam under moviaddas calculated

for several values of damping coefficief),(shear modulus (G), axial force (N) and foundatinodulus (K). The results

are shown graphically as a function of time.
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INTRODUCTION

The dynamic response of elastic structures sulgjetcteone or more travelling load is an interestimgblem in several
fields of applied mathematics, engineering andiadgbhysics; and the problem has been studied lny raathors [1-10].
However, this beam’s problem has largely beeniotstt to the case when the beam’s structure isotmif the more
difficult beam’s problem in which the mass per ueitgth of the beam and the moment of inertia gaviith certain

function of the spatial coordina®in the model equation received scanty attentidwe difficulty in the latter problem is

associated with the variable coefficient which apéan the governing equation describing the dycahproblem.

Among the few researchers on the dynamic analyfsimo-uniform beam are Oni and Omolofe [11], Hs@][1
Zhenget al[13], Oni and Awodola [14], and Omoladeal [15]. All these studies adopted Winkler elastiaridation and it
is well known that Winkler foundation predicts distinuities in the deflections of the surface of fbundation at the end

of a finite beam and in reality, the surface displaent continues beyond the load region.

To overcome this problem, Oni and Jimoh [16, 1#jsidered dynamic response to moving concentratedslof
non-uniform beam resting on bi-parametric subgrasiéis simply supported and other boundary condiio@spectively.
Their results revealed that, the deflection prefitef the beam decreases as the values of foundatamulus, shear

modulus and axial force increases. The dynamicyaizabf Bernoulli-Euler beam resting on bi-paraneesubgrades and
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subjected to concentrated moving loads for all gari@oundary conditions has been investigated tnphi[18]. He used
generalized finite Fourier sine transform and geliwed Galerkin’s methods of solutions to the gousy equations
describing the dynamical system. The results reptesl in graphical manner shows that, increasehénstructural
parameters lead to decrease in the response adgditnf the beam. His result also revealed that,effect of shear

modulus is more noticeable compare to that of fatiod modulus.

In a recent times, Ogunyebi [19] investigated flewibrations of non-uniform Rayleigh beam restiog
variable bi-parametric elastic foundation and tragd by moving distributed loads. In this studyngang term effect was

not taking into consideration.

This paper therefore, is concerned with the probtgnthe transverse motion of non-uniform Bernotlliler
beam resting on bi-parametric foundations undertii®mn of constant magnitude moving distributeaidl@nd taking into

consideration the damping effect.

Formulation of the Problem

The governing partial differential equation for anauniform Bernoulli-Euler beam of lengtliresting on bi-parametric
foundations and traversed by a constant magnitisiebited loadP{x, ) of massM moving with constant velocity is
given by [20]

W (x,t) 8w x,r} W ix.t) 82w r}

)+ (x) +E—"——N + Fplx,t) = P(x, 1) @

Z (B =

wherexis the spatial coordinate;, is the time, W (x,t) is the transverse displacemdJtix) is the variable
flexural rigidity of the structure(x) is the variable mass per unit length of the belims the axial force,£ is the

damping coefficientFr{x,t) is the foundation reaction a{ x, £} is the transverse distributed load.

The foundation reactidf (x, t)is given by Omer and Aitung [21]

Fqlx,t) = KW(x,t) + CE‘ Wixs)

2 (2)
WhereKand( are the foundation stiffness and shear modulyseively.

If the distributed moving loa®{ x, t} in equation{1) is assumed to be of constant magnitude we thus hav
P(x,t) = PH(x — ct) ()

The Heaviside functicd{x — ct) is defined as

H(x —ct) = {“’ for x<0 (@
1, forx>=0

with the properties

d—dx Hx—ct)} =8(x—ct) (5)
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FEOHGx — cf) = {f 0, for x<ct )

(x), forx=ct
whered{x — ct) represents the Dirac-delta function ddix — ct) is a typical engineering

function made to measure engineering applications.

Adopting the example in [22}4(x) and]/(x) are taken to be of the form
- . T
u()=po(1+5in =) @)

3
- - mx
J(x)=1, (1 +Sin” ) 8)
In this study, a simply supported beam is consilietaus, the boundary conditions are

wi(0,t) =0 = W(L, 1), aW(0.t) _ WLt
I

=0=—— C)

and the initial conditions

AW 0)
dr

Wix,0) =0= (10)

Using (2), (3), (7) and (8) in equation (1) we have

W) @*Wia.t) W at) 8°W (e
. (EID(1+51?—) a_) + po(1+5m=) 2 g TEE_ y 2

82w xr}
-z

+ KW(x, t) = PH(x — ct) (11)

which after simplifying and rearrangement yields

AW () AW (x,t)
- )+ ,uc.(l+511r :l Pyes +E Py

= (E 1o (10 + 155 = 6Cos == - 510 222 220

N +6) R T .r,r}'
+ KW(x, rj = PH(x — ct) (12)

Equation (12) is the fourth order partial diffefi@ahiequation governing the motion of a non-unifoBarnoulli-
Euler beam resting on bi-parametric foundations #mastersed by constant magnitude moving distributet with

damping effect.
Method of Solution

The best method suited for solving diverse problémslving mechanical vibration [23,24] is referréal as Galerkin's
method. This method is used to simplify and redtre fourth order partial differential equation (1®jth variable
coefficient describing the motion of the vibratimgn-uniform to second order ordinary differentiguations called

Galerkin’s equation.
n
W) = ) 54,0 (19
=
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where the functiorg J-{:x}l is chosen to satisfy the pertinent boundary caovbt

Thus, substituting equation (13) into equation (1) obtain

n

E El, 9° 2m 3 11 :
[ rl-Dﬂ ((l{] + lSSmT— ECGSTx —511‘1?) jl'[_x}}*}{_t})

=1
10 (1 451 ™) 0, (0¥, () + € 4, T () — (N + 6)g () ¥;(®)
+K q;()Y;(t)] — PH(x—ct) =0 (14)

To determine}‘_',-'[:tl the expressions on the left hand sides of equdfidi is required to be orthogonal to the

functiong; (£). Thus,

Ef a2 2 3 iy i
j E -0 ((l{] + 155in Tx - 5505? — Sin ?) _,“"[_x}}‘:,-'[_t})

+ 1o (1 +5in =) g, (0)¥;(6) + £ 4, )V () — (N + G)g L (x) ¥ (1)
+K q;(0)Y;(t) — PH(x — ct)| g (x)dx = 0 (15)

Equation (15) after some rearrangement and sinmpdjfyield.

Q1 ¥;(8) + Q2¥;(8) + QaX(8) = Q4 (16)

Where

Qu = poJy (1 +5m7%) q; ()i () ax (17a)

Q. =€ [ a;,(x)q, (¥) dx (17b)
=[5 E"'” & ((m +155in"" — 6Cos 7= — Sin""") jlcjx}qk{jx)) dx (17¢)

Qs = [y PH(x — ct)qy(x) dx (17d)

Since our beam has simple supports at both grd<landx = L, we therefore choose the functions
q;(x)andgy (x) to be
q;(x) = Sin = (18)

kmx

g (x) = SmT (19)
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In view of (18) and (19) integrals (17a-17d) fo= K can be evaluated to yields

_ L L . _ . Cosi1+2 _;l']l!r—l_ Cosl1-2jlm—1
Q= ‘HD(: 2w (2{_Cosrr 1) 1+2j 1-2j )) (203)
F% (20b)
El, (jn)“ 15L{ Cos(1+2/)m—1 Cos(1—2/)m—1
Qa=3\7 3 | 2(Cos— 1) 1+2 =T
L L {Cos(3+2)m—1 Cos(3-2j)m—1 3L Sin2(1 +jim—1

—\=+= - - - ——\| SinZn + . -

3n 3m 3+2 3-2 2m 2(1+))

_Sin2(1-jm =1 ]
2(1—))

_El (j_]‘r) Il (2 Cos(3+2j)m—1 Cos(3—2Pm—1

4+ \L 2 \3 6+4 6 —4j

157 Cos(1+2j)r—1 Cos(1—-2j)m—1
_T(ZCGSE_EJr a+2) (-2
6 [ .. Sin2(1+jim—1  Sin2(1—jin—1 L(G+N) {jmy* KL

T (szrr C 2 201 )] T (?) T (200)

— PL (0ps T o
Q.= — (E‘Gs A E'as;rr:l (20d)
Putting (20d) in equation (14) we obtain
Q,¥:(t) + Q. ¥;(2) + Q3¥;(2) = E(CGS}.%.“ - Cﬂsjrr) (21)
Equation (21) can be re-written as

@ Pz EBL Jme -
C..:—c..-.:—c. = = — =

where(yq e Tt = a=T B =Cosjn (23)

In what follows we subject the system of ordinaiffedential equation (22) to a Laplace transfornfirked as
. L - -
L(Y(®) = fyvDe = dt =Y(s) (24)
wheres is the Laplace parameter. Applying the initial ditions (10), we obtain
Tur i : : 5 1
S‘Y}- {t} =+ CJ_J_S}‘;{E'} + Cj_: }‘;{t} = Cla (m — E (E)) (25)
After simplifying and rearrangement equation (2Ret the form

9= 12 () () - () (25) - () () + (28 0] @
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where
le2 —ac,.
c Bl 13
ny=——%+ -
le2, -4,
Ty 11 12
My = —— — v

= L] L]

To obtain the Laplace inversion of equation (26§ is made of the following representations

5
e

9= (=) 9:0=()

So that the Laplace inversion of equation (26hésdonvolution ofi's andg,’s defined as

)

=

fj_'[-‘j'} =

fix g; =[5 filt—wg(wydu, i =1,2
=12

Thus, the Laplace inversion of (26) is given by

Cy3

%) = (ny +nz)(n] + a?)

(n e™t + & Sinat —n, Cosat +)

—— G5 (n,e™ +aSinat—n, Cosat +)
(ngtng dini+a?)
BCys A amaEy FCys 4 _ omat
+u-_|::u-_-u=]|{'l € } :u-_(n-_-u:]l{'l € }

Thus, in view of equation (13) taking into accoagtiation (32) we obtain

[ra]
| Z : Cys |

W.lx,t) = . — —(n et + o Singt—n, Cosat +
(6 t) (ny +n)(ne +a?) * ! )

Jj=1

Fod )
———2 (n,e"f + g Sinagt — n- Cosat +)
(ngtng ini+ad) =~ =

+ _ Pl (1- e”'—r]——'gc'a (1- E”'—'-r)] Sin?

nylmg—n=) nylng—na)

(27)

(28)

(29)

(30)

31)

(32)

(33)

which represent the transverse displacement respohthe non-uniform Bernoulli-Euler beam resting loi-

parametric foundations under the action of constaagnitude moving distributed load.

Discussion on the Close Form Solution

In this section, we investigated the resonance @ienon of our vibrating system, because the trasewdisplacement of

the beam may grow without bound. It is clearly shoinom equation (33) that the non-uniform BernoHlliler beam
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resting on bi-parametric foundation will experiemesonance effects whenever
ny = a? ny =a? andy, =n; (34)
It is also observed that as the foundation moduiti shear modulus increases the critical spedaeadynamical
system increases thereby reducing the risk of sezmmeffects.
Comments on the Numerical Results

In this paper for the purpose of analysis, we titeted the theory numerically. The velocity of thistributed moving load
and the length of the beam are ¢ = 8.128 m/s ant92th respectively. The values of the damping ddefft (£) are

varied between 0 and 2.5 x*1hile that of the shear modulus (G) varied betw@emd 2 x 18N/m°. The axial force (N)
varied between 0 and 2 x°NJm® while that of foundation modulus (K) varied betweand 4 x 10N/m®. The results are

presented in the graphs below.

Figure 1 displays the deflection profile of norifarm Bernoulli-Euler beam resting on bi-paramefocndation
and subjected to constant magnitude moving digetbload. The figure shows that as the value ofiiraping coefficient

(£) increase the deflection profile of the beam aioues time t decreases.

Figure 2 depicts the deflection profile of the imeander the action of moving distributed loadslseen from the

figure that the response amplitude of the beamedsers with an increase in the values of the shedulos (G).

Figure 3 and 4 shows respectively that as we asere¢he axial force (N) and foundation modulus (g

transverse displacement response of the non-uni8@moulli-Euler beam under the action of movingdaeduces.
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Figure 1: Deflection Profile of Non-Uniform Bernouli-Euler Beam

Subjected to Constant Distributed Moving Load for Fxed Value of

Axial Force (N), Shear Modulus (G) and Foundation Mdulus (K)
with Various Values of Damping Coefficient £).
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Figure 2: Deflection Profile of Non-Uniform Bernouli-Euler
Beam Subjected to Constant Distributed Moving loador Fixed
Value of Axial Force (N), Damping Coefficient {) and Foundation
Modulus (K) with Various Values of Shear Modulus (Q.

Drisplacet ent ()

++++

— = K =40000
— K =400000

Time (secs)

Figure 3: Deflection Profile of Non-Uniform Bernouli-Euler Beam

Subjected to Constant Distributed Moving Load for Fxed Value Of
Damping Coefficient (€), Shear Modulus (G) and Axial Force (N)

with Various Values of Foundation Modulus (K).
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Figure 4: Deflection Profile of Non-Uniform Bernouli-Euler Beam
Subjected to Constant Distributed Moving Load for Fxed Value of

Damping Coefficient (€), Shear Modulus (G) and Foundation Modulus
(K) with Various Values of Axial Force (N).

CONCLUSIONS

The objective of this work is to study the behawéthe dynamical system. A procedure involving G&erkins method
and integral transform techniques in conjunctiothwiie convolution theory has been used to obtaiaralytical solution
in series form. The effects of damping coeffici€li}, shear modulus (G), foundation modulus (K) arelakial force (N)
on the vibrating system are investigated. Analytsrlution and Numerical results in plotted cunsf®w that, as the
values of those structural parameters increasegjdfiection profile of the non-uniform Bernoullisler beam decreases.
Thus, the risk of resonance in the dynamical sysiader consideration reduces for higher valuesaofiping coefficient
in particular and other structural parameters.
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